Rongqian Zhang

Logo

Email: rongqian.zhang@mail.utoronto.ca

View the Project on GitHub RongqianZhang-UT/portfolio

PhD candidate in Statistics

Research interests

Education

Research Experience

Harmonizing Functional Connectivity Data Collected from Multiple Scanners/Sites

SAN: Mitigating Spatial Covariance Heterogeneity in Cortical Thickness Data Collected from Multiple Scanners or Sites

Publication

A Structured Multivariate Approach for Removing Latent Inter-Scanner Effects

Publication

Scalar on Image Deep Neural Network

fMRI Data Reconstruction, Visualization and Predictive Analytics

Publication

Work Experience

Teaching Assistant @ University of Toronto (September 2021 - Current)

Data Analyst Intern @ Bayer Healthcare Co. Ltd. (August 2018 - January 2019)

Awards & Honors

Presentations

Talks

2023 Joint Statistical Meetings (JSM)

2022 Statistical Methods in Imaging (SMI) conference

Poster

2023 Statistical Methods in Imaging (SMI) conference

2023 Eastern North American Region (ENAR) meeting

2024 Eastern North American Region (ENAR) meeting

Skills

Publications

  1. Weinstein, S.M., Tu, D., Hu, F., Pan, R., Zhang, R., Vandekar, S.N., Baller, E.B., Gur, R.C., Gur, R.E., Alexander-Bloch, A.F. and Satterthwaite, T.D., 2024. Mapping individual differences in intermodal coupling in neurodevelopment. bioRxiv, pp.2024-06.
  2. Zhang, R., Chen, L., Oliver, L.D., Voineskos, A.N. and Park, J.Y., 2024. SAN: mitigating spatial covariance heterogeneity in cortical thickness data collected from multiple scanners or sites. Human Brain Mapping, 45(7), p.e26692.
  3. Zhang, R., Oliver, L.D., Voineskos, A.N. and Park, J.Y., 2023. RELIEF: A structured multivariate approach for removal of latent inter-scanner effects. Imaging Neuroscience, 1, pp.1-16.
  4. Zhang, Y., Shen, Y., Zhang, R., Liu, Y., Guo, Y., Deng, D. and Dinov, I.D., 2023. Numerical methods for computing the discrete and continuous Laplace transforms. arXiv preprint arXiv:2304.13204.
  5. Zhang, R., Zhang, Y., Liu, Y., Guo, Y., Shen, Y., Deng, D., Qiu, Y.J. and Dinov, I.D., 2022. Kimesurface representation and tensor linear modeling of longitudinal data. Neural Computing and Applications, pp.1-20.